Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Braz J Microbiol ; 53(2): 959-968, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35171497

RESUMO

In this study, 10 lactic acid bacteria were isolated from Turkish fermented sausage (sucuk) and identified as 5 Lactobacillus plantarum, 1 Pediococcus acidilactici, 1 Weissella hellenica, 1 Lactobacillus pentosus, and 2 Lactobacillus sakei. PCR screening of genes encoding plantaricin A and pediocin showed the presence of plantaricin A gene in 9 and pediocin gene in 3 of strains. All isolates showed antibacterial and antifungal effect on most of the tested microorganisms. gad gene, encoding glutamic acid decarboxylase enzyme, was detected in all isolates except Weisella hellenica KS-24. Eight of isolates were determined as gamma-amino butyric acid (GABA) producer in the presence of 53 mM mono sodium glutamate (MSG) by HPLC and TLC analysis. DPPH scavenging activity was observed for all isolates. Additionally, isolates were able to produce exopolysaccharide in the presence of sucrose. The best exopolysaccharide (EPS) production was achieved with L. plantarum KS-11 and L. pentosus KS-27. As a result, this study characterized some techno-functional properties of LAB isolates from sucuk. It was concluded that the isolates studied have the potential to be used in obtaining functional products in meat industry, as well as strain selection may be effective in providing the desired properties in the product.


Assuntos
Microbiologia de Alimentos , Lactobacillales , Produtos da Carne , Bacteriocinas/genética , Fermentação , Lactobacillales/classificação , Lactobacillales/isolamento & purificação , Lactobacillus plantarum , Produtos da Carne/microbiologia , Pediocinas/genética
2.
Front Immunol ; 13: 822754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154141

RESUMO

Wild pigs usually showed high tolerance and resistance to several diseases in the wild environment, suggesting that the gut bacteria of wild pigs could be a good source for discovering potential probiotic strains. In our study, wild pig feces were sequenced and showed a higher relative abundance of the genus Lactobacillus (43.61% vs. 2.01%) than that in the domestic pig. A total of 11 lactic acid bacteria (LAB) strains including two L. rhamnosus, six L. mucosae, one L. fermentum, one L. delbrueckii, and one Enterococcus faecalis species were isolated. To investigate the synergistic effects of mixed probiotics strains, the mixture of 11 LAB strains from an intestinal ecology system was orally administrated in mice for 3 weeks, then the mice were challenged with Escherichia coli ATCC 25922 (2 × 109 CFU) and euthanized after challenge. Mice administrated with LAB strains showed higher (p < 0.05) LAB counts in feces and ileum. Moreover, alterations of specific bacterial genera occurred, including the higher (p < 0.05) relative abundance of Butyricicoccus and Clostridium IV and the lower (p < 0.05) abundance of Enterorhabdus in mice fed with mixed LAB strains. Mice challenged with Escherichia coli showed vacuolization of the liver, lower GSH in serum, and lower villus to the crypt proportion and Claudin-3 level in the gut. In contrast, administration of mixed LAB strains attenuated inflammation of the liver and gut, especially the lowered IL-6 and IL-1ß levels (p < 0.05) in the gut. Our study highlighted the importance of gut bacterial diversity and the immunomodulation effects of LAB strains mixture from wild pig in gut health.


Assuntos
Infecções por Escherichia coli/terapia , Enteropatias/terapia , Lactobacillales/fisiologia , Probióticos/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Enteropatias/imunologia , Enteropatias/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillales/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/uso terapêutico , Sus scrofa
3.
World J Microbiol Biotechnol ; 38(2): 25, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989904

RESUMO

A total of 272 isolates of lactic acid bacteria (LAB) were isolated from 22 samples of naturally fermented milk products of Sikkim in India viz. dahi, soft-variety chhurpi, hard-variety chhurpi, mohi and philu, out of which, 68 LAB isolates were randomly grouped on the basis of phenotypic characteristics, and were identified by 16S rRNA gene sequence analysis. Leuconostoc mesenteroides was the most dominant genus, followed by Leuc. mesenteroides subsp. jonggajibkimchii, Lactococcus lactis subsp. cremoris, Lc. lactis, Lc. lactis subsp. hordniae, Lc. lactis subsp. tructae, Enterococcus faecalis, E. italicus and E. pseudoavium. LAB strains were tested for probiotics attributes by in vitro and genetic screening, based on marker genes. LAB strains showed tolerance to pH 3.0, bile salt, resistance to lysozyme and ß-galactosidase activity. Enterococcus faecalis YS4-11 and YS4-14 and Lactococcus lactis subsp. cremoris SC3 showed more than 85% of hydrophobicity. Genes clp L and tdc encoding for low pH tolerance, agu A and Ir1516 encoding for bile tolerance, LBA1446 gene encoding for BSH activity, map A, apf, mub 1 and msa encoding for mucosal binding property were detected. Gene mesY for bacteriocin production was detected only in Leuconostoc spp. Based on the in vitro and genetic screening of probiotic attributes, Leuc. mesenteroides; Leuc. mesenteroides subsp. jonggajibkimchii and Lc. lactis subsp. cremoris were tentatively selected for possible probiotic candidates.


Assuntos
Produtos Fermentados do Leite/microbiologia , Fermentação , Testes Genéticos , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Probióticos , Animais , Bactérias/isolamento & purificação , Bacteriocinas , Bovinos , Enterococcus faecalis , Feminino , Microbiologia de Alimentos , Índia , Lactococcus , Leuconostoc/isolamento & purificação , Leite , Filogenia , RNA Ribossômico 16S/genética , Siquim
4.
Sci Rep ; 12(1): 1460, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087086

RESUMO

Boza is a traditional low-alcohol fermented beverage from the Balkan Peninsula, frequently explored as a functional food product. The product is rich in Lactic Acid Bacteria (LAB) and some of them can produce bacteriocins. In this study, a sample of Boza from Belogratchik, Bulgaria, was analyzed for the presence of bacteriocinogenic LAB, and after analyses by RAPD-PCR, three representative isolates were characterized by genomic analyses, using whole genome sequencing. Isolates identified as Pediococcus pentosaceus ST75BZ and Pediococcus pentosaceus ST87BZ contained operons encoding for bacteriocins pediocin PA-1 and penocin A, while isolate identified as Pediococcus acidilactici ST31BZ contained only the operon for pediocin PA-1 and a CRISPR/Cas system for protection against bacteriophage infection. The antimicrobial activity of bacteriocins produced by the three isolates was inhibited by treatment of the cell-free supernatants with proteolytic enzymes. The produced bacteriocins inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp., among other tested species. The levels of bacteriocin production varied from 3200 to 12,800 AU/ml recorded against L. monocytogenes 104, 637 and 711, measured at 24 h of incubation at 37 °C. All bacteriocins remained active after incubation at pH 2.0-10.0. The activity mode of the studied bacteriocins was bactericidal, as determined against L. monocytogenes 104, 637 and 711. In addition, bactericidal activity was demonstrated using a cell leakage ß-galactosidase assay, indicating a pore formation mechanism as a mode of action. The present study highlights the importance of combining genomic analyses and traditional microbiological approaches as way of characterizing microbial interactions in fermented foods.


Assuntos
Bebidas Alcoólicas/microbiologia , Bacteriocinas/metabolismo , Alimentos Fermentados/microbiologia , Lactobacillales/isolamento & purificação , Bulgária , Grão Comestível , Microbiologia de Alimentos , Lactobacillales/genética , Lactobacillales/metabolismo , Sequenciamento Completo do Genoma
5.
BMC Vet Res ; 18(1): 12, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042502

RESUMO

BACKGROUND: Salmonellosis is one of the most important food-borne zoonotic disease affecting both animals and humans. The objective of the present study was to identify gastrointestinal (GI) lactic acid bacteria (LAB) of canine-origin from Salmonella-negative dogs' faeces able to inhibit monophasic Salmonella Typhimurium previously isolated from dogs' faeces, in order to be used as a potential probiotic in pet nutrition. RESULTS: Accordingly, 37 LAB were isolated from Salmonella-negative dogs' faeces and tested against monophasic S. Typhimurium using the spot on lawn method out of which 7 strains showed an inhibition halo higher than 2.5 cm. These 7 strains were also tested with the co-culture method and one showed the greatest inhibition value (p < 0.05). Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius (L. salivarius). LAB from Salmonella-positive dogs were also identified and none was the selected strain. Finally, to identify the mechanism of inhibition of L. salivarius, the supernatant was analyzed, and a dose response effect was observed. CONCLUSIONS: It is concluded that the canine-origin L. salivarius, could possess some in vitro functional attributes of a candidate probiotic and could prevent monophasic S. Typhimurium colonization or inhibit its activity if the infection occurs.


Assuntos
Cães/microbiologia , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Animais , Lactobacillales/isolamento & purificação , RNA Ribossômico 16S/genética , Salmonella typhimurium
6.
Appl Microbiol Biotechnol ; 105(19): 7367-7378, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34536099

RESUMO

Fluorescent proteins are widely used for cell and protein tracking. Most of these proteins show a high signal and need the presence of oxygen to emit fluorescence. Among them, the fluorescent protein mCherry stands up because of its bright signal and fast maturation. Furthermore, the anaerobic cyan-green fluorescent protein Evoglow-Pp1 allows fluorescent detection under anaerobic conditions. In this work, we modified the pNZ:TuR.aFP plasmid, which harbors the gene encoding Evoglow-Pp1 and the promoter of elongation factor Tu from Limosilactobacillus reuteri CECT925, to obtain a plasmid containing the mrfp gene encoding the monomeric mCherry (pNZ:TuR.mCherry). Moreover, both genes were cloned together (pNZ:TuR.aFP.mCherry) developing a chimeric protein; and with a stop codon between them (pNZ:TuR.aFP.STOP.mCherry) resulting in the expression of both Evoglow-Pp1 and mCherry proteins separately under the influence of the same promoter. Lactococcus lactis, Lacticaseibacillus casei, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Lacticaseibacillus rhamnosus, and L. reuteri strains were transformed with the previously mentioned plasmids, showing an excellent red (pNZ:TuR.mCherry), green (pNZ:TuR.aFP), and red combined with green (pNZ:TuR.aFP.mCherry and pNZ:TuR.aFP.STOP.mCherry) fluorescence signal. Both fluorescence emissions were stable in strains transformed with pNZ:TuR.aFP.STOP.mCherry, while differences in the red or green fluorescence emission were observed in some of the strains harboring pNZ:TuR.aFP.mCherry. Moreover, these plasmids allowed strains differentiation in a complex environment, such as fecal microbiota. Hence, we present the plasmid pNZ:TuR.aFP.STOP.mCherry as a useful tool for the labeling of lactobacilli strains, which would be functional under anoxic conditions, thanks to Evoglow-Pp1, while having the high brightness and good photostability of mCherry. KEY POINTS: • LAB transformed with pNZ:TuR.mCherry expressed the red fluorescent protein mCherry. • LAB transformed with pNZ:TuR.aFP.mCherry developed a fusion of both proteins Evoglow-Pp1 and mCherry. • LAB with pNZ:TuR.aFP.STOP.mCherry expressed both fluorescent proteins separately.


Assuntos
Lactobacillales , Proteínas Luminescentes , Lactobacillales/isolamento & purificação
7.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360567

RESUMO

Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are thought to be major drivers of antibiotic resistance spread. The present work reports a simple way to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei. Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids in the spread of resistance genes via the food chain.


Assuntos
Antibacterianos/farmacologia , Queijo/microbiologia , Resistência Microbiana a Medicamentos , Eritromicina/farmacologia , Lactobacillales/crescimento & desenvolvimento , Plasmídeos/genética , Animais , Lactobacillales/efeitos dos fármacos , Lactobacillales/isolamento & purificação
8.
World J Microbiol Biotechnol ; 37(9): 146, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34363545

RESUMO

Bakery products are a common medium for fungal growth due to their high-water activity and nutrients availability. The application of lactic acid bacteria (LAB) isolated from wheat bran or other cereals has shown great potential in controlling the growth of spoilage fungi, guarantee quality and prolong the shelf life of bakery products. This study outlines the antifungal, technological, functional and safety properties of autochthonous LAB microbiota isolated from type 0 soft wheat sourdough fermentation. Antifungal activity of 77 LAB belonging to Lactiplantibacillus plantarum and Lacticaseibacillus casei species isolated from spontaneous sourdough fermentation was tested in vitro against 16 spoilage fungi. Our findings demonstrated that the antifungal activity, enzymatic and safety properties of LAB isolates vary strain-dependently. Four LAB isolates (Lp. plantarum A16, A25, B11, and B15) showed the best traits, in particular strong antifungal activity and good capabilities to produce exopolysaccharides from different carbon sources in vitro. Care should be taken when using Lp. plantarum A310 and B18 and Lc. casei A23, as starter cultures, since these isolates exhibited a multiple antibiotic-resistance. Here we showed the promising potential of different LAB isolates as bio-preservative agents and to provide new insights regarding their prospective use as starter cultures to guarantee safety and palatability.


Assuntos
Antifúngicos/farmacologia , Fatores Biológicos/farmacologia , Pão/microbiologia , Fungos/crescimento & desenvolvimento , Lactobacillales/classificação , Análise de Sequência de DNA/métodos , Triticum/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Fermentação , Microbiologia de Alimentos , Conservação de Alimentos , Lactobacillales/isolamento & purificação , Lactobacillales/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Polissacarídeos Bacterianos/metabolismo , RNA Ribossômico 16S/genética
9.
Food Microbiol ; 100: 103872, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416969

RESUMO

This study aimed to evaluate technological (acidification, proteolysis, lipolysis, resistance to low pH, NaCl, and bile salts) and biopreservation (antimicrobial activity against foodborne pathogens) features of 1002 LAB by high throughput screening (HTS) methods. The LAB was isolated from 11 types of Brazilian artisanal cheeses (BAC) marketed in the main 5 producing regions. Remarkable intra-species variability in acidification rates have been found, which was most pronounced between isolates from Mina's artisanal cheeses, Caipira and Coalho cheeses. Lacticaseibacillus paracasei and Levilactobacillus brevis showed the fastest acidification rate; however, all isolates showed slower acidification rates than a lactococcal control strain (4.3 × lower). When testing inhibitory effects, > 75% of LAB isolates could inhibit the growth of Staphylococcus aureus ATCC 19095 and Listeria monocytogenes ATCC 7644. Two of these isolates, identified as Lactiplantibacillus plantarum and Lentilactobacillus buchneri, the sterile and neutral supernatants alone, were sufficient to inhibit L. monocytogenes growth. Principal component analysis (PCA) allowed the identification of functional groups based on proteolytic and lipolytic activity, osmotic stress resistance, and inhibition of L. monocytogenes. The type of cheese the isolates were recovered from influenced properties such as anti-listerial compounds and lipolytic enzyme production. The use of HTS and multivariate statistics allowed insights into a diverse set of LAB technological and biopreservation properties. These findings allow a profound knowledge of the heterogeneity of a large set of isolates, which can be further used to design starter cultures with varied and combined properties, such as biopreservation and technological features. Besides that, HTS makes it possible to analyze a vast panel of LAB strains, reducing costs and time within laboratory analysis, while avoiding the loss of information once all LAB are tested at the same time (differently from the traditional labor-intensive approach, in which a few numbers of strains is tested per time).


Assuntos
Queijo/microbiologia , Lactobacillales/isolamento & purificação , Antibiose , Brasil , Ensaios de Triagem em Larga Escala , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Filogenia
10.
Artigo em Inglês | MEDLINE | ID: mdl-34181514

RESUMO

Members within the family Rhodbacteraceae are morphologically and genetically highly diverse, and originate mostly from coastal marine environments. In this study, a novel species of this family, designated M0103T, was isolated from the surface of a sea snail Littorina scabra. Strain M0103T is Gram-stain-negative, halophilic, non-motile and non-Bacteriochlorophyll a-producing bacterium. Several phenotypic characteristics of the isolate were similar to other species within this family, such as the sole respiratory quinone Q-10 and major fatty acid components C18 : 1 ω7c, C18 : 0 and C16 : 0. Strain M0103T contains a diphosphatidylglycerol, a phosphatidylglycerol, a phosphatidylcholine, a phosphatidy ethanolamine, a phosphatidylinositol, five unidentified phospholipids and four unidentified polar lipids. Based on the 16S rRNA gene sequence analysis, this isolate showed the closest phylogenetic relationship with 'Palleronia pontilimi' GH1-23T (95.1 %). Values of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) of genome sequences were of 70.1-76.4 % and 18.3-20.9 % between the isolate and 24 closely related type strains. Analysis the 4.0 Mb genome of strain M0103T revealed several putative genes associated with cellular stress resistance, which may play protective roles for the isolate in the adaptation to a marine environment. Phylogenetic, phenotypic and chemotaxonomic analyses suggested that strain M0103T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Mesobaculum littorinae gen. nov., sp. nov. is proposed. The type strain is M0103T (=MCCC 1K03619T=KCTC 62358T).


Assuntos
Lactobacillales/isolamento & purificação , Caramujos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Ácidos Graxos/análise , Ácidos Graxos/química , Lactobacillales/genética , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
11.
FEMS Microbiol Lett ; 368(11)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34086864

RESUMO

Artisanal products support the conservation of the indigenous biodiversity of food microbiomes, although they do not always comply to quality and hygienic requirements for the dairy industry. This study describes the development of an autochthonous starter culture to produce Matsoni, a traditional Georgian fermented milk. To this end, strains of lactic acid bacteria isolated from artisanal Matsoni samples were used to design a starter formulation reproducing the dominant microbial diversity, also preserving quality characteristics and ensuring the safety of the product. As a result, strains that represent the acidifying portion of the starter (Lactobacillus delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus) were combined in different ratios and strain combinations, together with cultures of Lactobacillus rhamnosus that were chosen for their potential beneficial traits. The strain association acting better in milk cultures at laboratory scale was selected as starter culture for the production of Matsoni in pilot-scale industrial trials.


Assuntos
Produtos Fermentados do Leite/microbiologia , Produtos Fermentados do Leite/análise , Fermentação , Microbiologia de Alimentos , República da Geórgia , Concentração de Íons de Hidrogênio , Lactobacillales/classificação , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Probióticos , Paladar
12.
Probiotics Antimicrob Proteins ; 13(6): 1598-1610, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34164781

RESUMO

Probiotics play significant roles in enhancing systemic immunity, improving intestinal balance and feed value, enhancing enzymatic digestion, and inhibiting pathogenic microorganisms of freshwater fish. Probiotics from an identical organism's gastrointestinal system promote effective colonization and provide greater benefits than other sources. This study aimed to evaluate the usefulness of probiotic bacteria isolated from the intestines of freshwater fishes for a dietary supplement of freshwater aquaculture. A total of 120 isolates were collected from freshwater fishes of Channa striata, Puntius filamentosus, Oreochromis mossambicus, Cirrhinus mrigala, and Rasbora daniconius. Seven of these isolates exhibited antagonistic activity against fish pathogens: Aeromonas hydrophila, Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Using 16S rRNA gene sequencing analysis, the isolates were identified as Enterococcus sp., Lactococcus lactis, Weissella cibaria, and Limosilactobacillus fermentum. Of these tolerates, L. fermentum URLP18 isolated from C. mrigala exhibited high tolerance to low acidic (pH 2.0) and high bile salt (2%) concentrations, exhibiting a significant hydrophobicity and extracellular enzyme secretions like amylase, protease, and lipase. In vitro evaluations on intestinal mucus indicate that L. fermentum URLP18 have strong adherence capacity, and its survival rate increased after being administered to Artemia nauplii. The results suggest that L. fermentum URLP18 has high probiotic potential and is an effective dietary supplement for freshwater aquaculture.


Assuntos
Peixes/microbiologia , Lactobacillales , Probióticos , Animais , Aquicultura , Água Doce , Intestinos/microbiologia , Lactobacillales/genética , Lactobacillales/isolamento & purificação , RNA Ribossômico 16S/genética
13.
Sci Rep ; 11(1): 12586, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131227

RESUMO

The study aimed to isolate and identify lactic acid bacteria (LAB) from silages and their application to improve the fermentation quality of alfalfa. Forty-nine LAB strains were isolated from silages, and two strains were screened for growth and acid production rates. Then two strains were selected for Physiological and morphological tests and 16S rRNA sequencing. They were Gram-positive and Catalase-negative and were able to grow at pH 3.5 and at 45 °C, were unable to grow different NaCl concentrations as 3.0% and 6.5%. Strain BDy3-10 was identified as Lactobacillus rhamnosus, while TSy1-3 was identified as L. buchneri. The selected strains were evaluated on fermentation of alfalfa silage. The highest crude protein content occurred in the BDy3-10 treatment group. The contents of neutral detergent fiber and acid detergent fiber in the TSy1-3 treatment were significantly lower than other treatment (P < 0.05). Compared to the control treatment, inoculation treatments deceased pH during ensiling (P < 0.001) and provided the most increased lactic acid content after ensiling for 10 days (P < 0.001). The acetic acid contents of all the inoculation groups were significantly increased (P < 0.001) during ensiling, and were lower than that of control group (P < 0.001). So, the TSy1-3 treatment most effectively improved the fermentation quality of alfalfa silage in warm and humid climate area.


Assuntos
Clima , Lactobacillales/isolamento & purificação , Lactobacillus/genética , Silagem , Ácido Acético/metabolismo , Fibras na Dieta/metabolismo , Fermentação , Temperatura Alta , Humanos , Umidade , Ácido Láctico/metabolismo , Lactobacillales/classificação , Lactobacillales/genética , Medicago sativa/genética , RNA Ribossômico 16S/genética
14.
Folia Microbiol (Praha) ; 66(5): 761-774, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34110617

RESUMO

This study aimed to isolate lactic acid bacteria (LABs) of technological interest from Moroccan camel milk and select starter or adjunct culture for dairy product manufacturing. The phenotypic and biochemical identification of 47 isolates revealed the existence of ten Lactococcus lactis, eleven Lactobacillus plantarum, three Lactobacillus brevis, two Lactobacillus paracasei, eleven Enterococcus spp., seven Lactococcus spp. and two Lactobacillus spp. Our strains showed a fast acidifying ability (ΔpH ranged between 0.69 ± 0.01 and 1.22 ± 0.05 after 6 h), high proteolytic and autolytic activities (1.93 ± 0.02 to 9.9 ± 0.022 mM glycine and 15.21 ± 2.21% to 83.24 ± 1% respectively), and an important lipolytic and free radical scavenging capacity. Furthermore, they were able to use citrate, to produce exopolysaccharide, and they exhibited antibacterial activity against Gram-negative and Gram-positive pathogenic bacteria and had no hemolytic activity. This study has shown that Moroccan camel milk represents a rich biotope of interesting LABs for dairy products industry.


Assuntos
Microbiologia de Alimentos , Lactobacillales , Leite , Animais , Camelus , Laticínios/microbiologia , Lactobacillales/classificação , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Leite/microbiologia
15.
Food Microbiol ; 99: 103836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119120

RESUMO

Greece is a country possessing many cheese products granted with a PDO (Protected Designation of Origin) certificate, with high exporting activities. In this study, we analyzed six popular cheese PDO products purchased from different industries to assess their microbial communities using amplicon metabarcoding analysis. To this end, using Next Generation Sequencing technology, we sequenced the 16S rRNA gene and the ITS spacer for prokaryotes and fungi, respectively. Alpha diversity indices revealed higher bacterial species richness for some cheeses (Kopanisti, Batzos) and poor for others (Feta, Galotiri). Kopanisti, together with Kalathaki and Anevato, also presented increased species diversity concerning fungal populations. Results showed that lactic acid bacteria (LAB) prevailed the bacterial populations in all samples (Lactococcus, Lactobacillus, Streptococcus, Leuconostoc), whereas for fungi, members of the Saccharomycetaceae, Dipodascaceae and Debaryomycetaceae families prevailed the fungal populations. Several other genera were identified that make up each product's microbiome leading to the creation of the unique organoleptic attributes of Greek PDO cheeses. However, the identified species could not be directly linked to certain cheese types, assuming that starter and adjunct cultures, combined with the raw material used during production greatly impact the microbial communities in cheeses. Our data, produced for the first time for six Greek PDO cheeses, can be exploited in the process of creating a core microbial signature within each cheese type, supporting the Greek brand name and valorizing cheese products.


Assuntos
Queijo/microbiologia , Fungos/isolamento & purificação , Lactobacillales/isolamento & purificação , Microbiota , DNA Bacteriano/genética , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Grécia , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/metabolismo , Filogenia , RNA Ribossômico 16S/genética
16.
Microb Cell Fact ; 20(1): 109, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049541

RESUMO

BACKGROUND: Plant-based milk alternatives are more popular than ever, and chickpea-based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid L-lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations. RESULTS: Using in-silico screening and food safety classifications, 31 strains were selected as potential L-lysine producers from approximately 2,500 potential candidates. Beneficially, 30% of the isolates significantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best-performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by 13C metabolic pathway analysis. Spiking small amounts of citrate into the fermentation significantly activated L-lysine biosynthesis in NCC 156 and stimulated growth. Both microbes revealed additional benefits in eliminating indigestible sugars such as stachyose and raffinose and converting off-flavour aldehydes into the corresponding alcohols and acids with fruity and sweet notes. CONCLUSIONS: B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511 emerged as multi-benefit microbes for chickpea milk fermentation with strong potential for industrial processing of the plant material. Given the high number of L-lysine-producing isolates identified in silico, this concept appears promising to support strain selection for food fermentation.


Assuntos
Vias Biossintéticas , Aromatizantes/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lisina/biossíntese , Substitutos do Leite/metabolismo , Açúcares/metabolismo , Cicer/metabolismo , Fermentação , Microbiologia de Alimentos , Genoma Bacteriano , Lactobacillales/isolamento & purificação , Paladar
17.
Int J Food Microbiol ; 350: 109242, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34044228

RESUMO

Lactic acid fermentation is a traditional process to preserve foods and to modify their organoleptic properties. This process is generally conducted in a spontaneous way, allowing indigenous lactic acid bacteria (LAB) of the matrix and of the environment to compete and grow. The aim of this study was to better characterise LAB strains ability to modify aroma profiles in fruit and vegetable matrices, by focusing on two key enzymatic activities: ß-glucosidase and alcohol dehydrogenase (ADH). Firstly, 200 LAB isolated from Cambodian and Vietnamese fermented foods were screened for their ß-glucosidase activity and duplicate isolates identified through RAPD-PCR analysis were discarded. Thereby, 40 strains were found positive for ß-glucosidase using p-nitrophenyl-ß-D-glucopyranoside as substrate. Among them, 14 displayed an activity greater than 10 nmol/min/mg dry cell. Thirteen were identified as Lactiplantibacillus (L.) plantarum and one as L. pentosus. Secondly, four strains of different phenotypes for ß-glucosidase activity were tested for ADH activity. The highest reduction ability for hexanal and (E)-2-hexenal was obtained for Limosilactobacillus (L.) fermentum V013-1A for which no ß-glucosidase activity was detectable. The three other strains (L. plantarum C022-2B, C022-3B, and V0023-4B2) exhibited a lower reduction ability and only for hexanal. Thirdly, mashed tomatoes were fermented with these four strains individually to evaluate their ability to release volatile compounds from the tomato precursors. Fifty-eight volatile compounds were identified and quantified by HS-SPME/GC-MS. Untreated tomatoes were rich in aldehydes. The tomatoes fermented with L. plantarum strains were rich in ketones whereas those with L. fermentum were rich in alcohols. However, for the generation of terpenoids that provide flower and fruit flavours, our screening of ß-glucosidase activity was not able to explain the differences among the strains. For ADH activity, L. fermentum exhibited a high activity in fermentation as most of the target aldehydes and ketones disappeared and were replaced by their corresponding alcohols. The L. plantarum strains exhibited a lower activity but with an important substrate-selectivity diversity. A better knowledge of the functionality of each LAB strain in the food matrix will permit to predict and shape the aroma profiles of fermented food.


Assuntos
Álcool Desidrogenase/metabolismo , Alimentos Fermentados/microbiologia , Frutas/microbiologia , Lactobacillales/metabolismo , Verduras/microbiologia , beta-Glucosidase/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Alimentos Fermentados/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Ácido Láctico/análise , Lactobacillales/isolamento & purificação , Odorantes/análise , Técnica de Amplificação ao Acaso de DNA Polimórfico
18.
J Parasitol ; 107(3): 381-387, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971011

RESUMO

Co-infections of mammalian hosts with intestinal helminths and bacterial pathogens are common, especially in areas with inadequate sanitation. Interactions between co-infecting species and host microbiota can cause significant changes in host immunity, disease severity, and pathogen transmission, requiring unique treatment for each case. A greater understanding of the influences of parasite-bacteria co-infections will improve diagnosis and therapeutic approaches to control infectious diseases. To study the influence of the trematode parasite Echinostoma caproni on commensal and pathogenic bacteria in the mouse gut, we examined the abundance of intestinal lactic acid bacteria and Salmonella enterica serovar Typhimurium in control mice not exposed to E. caproni (P-) or S. Typhimurium (S-), E. caproni-infected (P+S-), S. Typhimurium-infected (P-S+), and E. caproni-S. Typhimurium co-infected (P+S+) mice, and determined bacterial burdens in the livers and spleens of the P-S+ and P+S+ mice. We also examined a subset of P+S- and P+S+ mice for survival and the relative location of E. caproni in the small intestine. The numbers of presumptive lactic acid bacteria were significantly higher in the P+S+ and P-S+ mice compared to the uninfected mice, and S. Typhimurium colonization in the liver and spleen was significantly reduced in the P+S+ mice compared to the P-S+ mice. Echinostoma caproni were located anteriorly in the intestine of P+S- mice, while in the P+S+ mice, the parasites were distributed more posteriorly. Survival of E. caproni was unaffected in either group. The results of our study suggest that E. caproni facilitates a higher abundance of presumptive lactic acid bacteria in the mouse intestine and reduces colonization of S. Typhimurium in the liver and spleen of the co-infected host.


Assuntos
Echinostoma/fisiologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Lactobacillales/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Biomphalaria/parasitologia , Echinostoma/isolamento & purificação , Fezes/microbiologia , Fezes/parasitologia , Feminino , Lactobacillales/isolamento & purificação , Fígado/microbiologia , Fígado/parasitologia , Metacercárias/isolamento & purificação , Metacercárias/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Método de Monte Carlo , Salmonella typhimurium/isolamento & purificação , Baço/microbiologia , Baço/parasitologia
19.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808805

RESUMO

A total of 20 of isolates of lactic acid bacteria (LAB) were selected and screened for antagonistic activity against clinical strains of 30 clinical isolates of extremely drug-resistant (XDR) Acinetobacter baumannii using the well diffusion assay method. Results showed that 50% of the highly LAB strains possessed inhibitory activity against (up to 66%) of the XDR A. baumannii strains tested. The supernatant of the twenty LAB strains was subjected to gas chromatography mass spectrometry (GCMS) revealed that the common compound found in the active isolates against XDR A. baumannii was 3-Isobutyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, a known potential diketopiperazine group. The molecular docking study against potential antibacterial targets with selected ligands was performed to predict the binding mode of interactions, which is responsible for antibacterial activity. The docking analysis of the potent compounds supported the potential antibacterial activity exhibiting high inhibition constant and binding affinity in silico.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos , Farmacorresistência Bacteriana/efeitos dos fármacos , Lactobacillales/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Lactobacillales/isolamento & purificação
20.
Arch Microbiol ; 203(6): 3305-3315, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33860850

RESUMO

The forest musk deer, Moschus berezovskii, is a nationally protected species of economic importance in China. However, in captive breeding programmes, they usually die as a result of diarrhoea. In this study, six M. berezovskii were randomly selected and divided into two groups: probiotics group (n = 3) and placebo (control) group (n = 3). The two groups were fed a basal diet that included 2 g probiotics (probiotic group) or 2 g whey powder (placebo group) for 30 days. Faecal samples were collected at day 0, 15 and 30 and evaluated for microbial diversity, species richness and metabolic function. Probiotic intervention significantly improved gut health in M. berezovskii by changing the overall community structure of the gut microbiota. Intake of probiotics reduced the relative abundance of pathogenic bacteria such as Escherichia coli and Citrobacter freundii in the intestinal flora and increased the relative abundance of beneficial Bifidobacterium species and other lactic acid bacteria. At the same time, gut microbiota in the probiotics group were involved in regulating degradation of phenylacetic acid and in dTDP-L-rhamnose synthesis; these processes have the potential to enhance immunity in M. berezovskii. This preliminary study revealed the beneficial effects of probiotics on the gut microbiota of M. berezovskii, which the potential to significantly improve the health, wellbeing and economic value of M. berezovskii.


Assuntos
Cervos/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bifidobacterium/isolamento & purificação , Biodiversidade , China , Fezes/microbiologia , Lactobacillales/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...